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Abstract
First principles calculations are performed on possible structures of silicon
monoxide solids. The chemical character of all of the bonding interactions
is systematically quantified in real space. It is found that the most stable SiO
structure possesses the highest number of inequivalent bond paths. This process
reveals a novel metallic Si–Si interaction and provides an explanation for the
origin of the unexpectedly high conductivity in thin silicon oxide layers. In this
paper a new measure for quantifying metallic character (in direct space) present
in a bond has been introduced. Furthermore it has been possible to determine
the directional properties of this metallic character in real space using the charge
density. This finding is very important for future complementary metal oxide
semiconductor technology.

1. Introduction

As design of new materials on the atomic scale becomes more important,particularly in the field
of nanotechnology, the use of more quantitative and local measures of chemical and physical
properties becomes urgent. For instance, it is useful in a bulk situation to be able to calculate
the binding energy, but this assumes an averaging of the bonding environments. At a surface,
the simplest crystal becomes far more complex: there are now many more different bonding
environments than in the bulk. Many of these bonds will be distorted and strained beyond of
the reach of traditional chemical description. On surfaces there may well be various types of
adatom or vacancy defect, which further complicate the bonding environment. Changes on
a surface will have consequences further into the bulk, e.g. the commonly used technique of
adding hydrogen atoms to passivate ‘dangling’ bonds. The ability to be able to follow these
changes in the topology of the charge density in a quantitative and predictive manner is hence
very important for surfaces, and also those changes produced by chemical reactions and the
movement of defects and dislocations. For instance, it is possible to predict where a defect
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will move from based on its instability at the site of the defect, and where it will move to as
measured by the reactivity of the ‘receptor’ site [1].

The need for a quantum mechanical model that can quantitatively describe bonding locally,
i.e. on a bond-by-bond basis, is clear. As far as this work is concerned the solids studied have
a range of bonding environments including a solid that is a (2 + 1)-dimensional solid, an
extended sheet structure. This model must provide both chemical and energetic descriptions
to the bonding environment; the theory that has been used is the developing theory of ‘atoms in
molecules’ AIM [2], sometimes called (somewhat unpronounceably) QTAIM, ‘QT’ standing
for quantum theory.

The ability to obtain a detailed quantitative description on the little-studied monoxide
system SiO is very important for the development of the complementary metal oxide
semiconductor (CMOS) technology. This has enabled the understanding in particular of the
origin of the unexpectedly high conductivity in thin silicon oxide layers.

In this paper a new measure for quantifying metallic character has been introduced, a
simple relationship between the charge density and the Laplacian within the framework of the
AIM theory. This relation was introduced to explore directly the relationship between the real
space charge density distribution and the wealth of knowledge already in existence using the
conventional reciprocal space based approach of solid-state physics. This approach could in
the near future be used to describe how the electrical resistance of colossal magnetoresistive
(CMR) materials [3] changes by orders of magnitude, effectively switching a material between
insulating and metallic states. Band structures are calculated in reciprocal space, and in doing
so the presence of metallic character and its variation with direction can be ascertained. If a
substance shows metallic properties in reciprocal space it is reasonable to conclude that it may
be possible to provide a real space description as well.

In this paper the results from ab initio electronic structure calculations are performed based
on the five SiO structures postulated by Mankefors et al [4]. There exist no clear-cut experimen-
tal characterizations of bulk SiO, so it is important to relate any findings to previously known
substances. This study refers to the familiar ideal tetragonal SnO-type structure [5] and its mod-
ifications as presented by Mankefors et al [4]. Five possible SiO structures were considered,
comprising rocksalt, zincblende, wurtzite, the orthorhombically distorted SnO-type sheet struc-
ture and a hypothetical fivefold coordinated wurtzite structural analogue for reference. The su-
perlattice calculations were performed in order to obtain the total electron density distributions
for the five SiO structures and the SnO structure. The total electron density distributions are the
entire basis for the work of this study. Readers are referred to [4] for diagrams of the rocksalt,
zincblende and wurtzite structures; the fivefold coordinated wurtzite structural analogue and the
orthorhombically distorted SnO type sheet structure are shown in figures 1 and 2 respectively.
Relationships derived from the charge density are plotted and shown in figures 3 and 4. Point
and directional properties of the bonding interactions are given in tables 1 and 2 respectively.

2. Method and computational details

All geometries for the different structural arrangements were calculated ab initio, using density
functional theory (DFT) and employing the local density approximation as implemented by
Ceperley and Alder [6] and Perdew and Zunger [7]. The calculations to obtain the correct
atomic positions were performed using the plane-wave based code fhi94md.cth [8]. The
theoretical lattice parameters of SiO were obtained from calculations performed by Mankefors
et al [4] who also provided the relevant theoretical atomic positions [9]. The lattice parameters
for SnO were taken from the work of Graeme W Watson [10] who also provided the theoretical
atomic positions [11] using VASP [12–14] and the GGA.
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Table 1. Variation of various quantities with BPL (bond path length in ångstroms (Å)), where
ρ(rb) and H (rb) are given in atomic units (au), |λ1|/λ3, ε, ξ(rb) and ELF are dimensionless and
De(rb) and Desum(rb) are in electron volts (eV). The symbols are explained in the text.

SiO BPLa ρ(rb) |λ1|/λ3 ξ(rb) ε H (rb)
b De(rb) Desum(rb) ELFd

Relaxed SnO

Si1–O3 1.786 0.099 0.180 0.205 0.003 −0.028 2.418 7.095c 0.141
Si1–O4 2.170 0.051 0.275 1.041 0.016 −0.021 0.730 0.273
Si1–Si2 2.962 0.034 0.480 5.667 0.168 −0.007 0.200 0.606

Rocksalt

Si1–O2 2.250 0.053 0.357 1.395 0.000 −0.017 0.602 3.614 0.388

Tetragonal wurtzite analogue

Si1–O4 1.618 0.140 0.147 0.126 0.000 −0.031 4.619 5.741 0.110
Si1–O3 2.618 0.030 0.264 0.732 0.014 −0.004 0.244 0.255
Si2–O4 2.882 0.018 0.192 0.474 0.000 −0.001 0.143 0.117

Wurtzite

Si2–O3 1.583 0.153 0.136 0.114 0.015 −0.034 5.495 5.999 0.103
Si1–O4 2.784 0.023 0.254 0.697 0.003 −0.002 0.168 0.202

Zincblende

Si1–O2 2.035 0.072 0.390 2.118 0.000 −0.033 1.028 4.111 0.415

SnO relaxed

Sn1–O3 2.246 0.064 0.193 0.288 0.015 −0.008 0.971 4.076 0.179
Sn1–Sn2 3.853 0.011 0.227 0.917 0.031 −0.0003 0.048 0.206

a The BPL was within 1% of the linear separations of bonded nuclei.
b H (rb) = G(rb) + V (rb); G(rb) and V (rb) are the virial and the kinetic energy densities respectively.
c Desum(rb) = 4 × De(rb)Si1−Si2 + 2 × (De(rb)Si1−O3 + De(rb)Si1−O4) = 7.095 eV.
d The ELF values are evaluated at the BCP.

The total charge density distributions were obtained using CRYSTAL 98 [15]. Localized
basis sets were used for the purposes of obtaining the total charge density distributions. For the
silicon and oxygen atoms 6-31G* basis sets were initially selected, then diffuse functions were
removed and the outer exponentials were carefully optimized in the SiO bulk using the code
LOPTCG available within CRYSTAL98. The 6-31G* basis set is a so-called split valence set
(single function for the core; two for the valence) with the core orbital of each atom described
by a linear combination of six Gaussian primitives, and the two valence functions modelled
respectively by (i) a linear combination of three Gaussians, and (ii) a lone (i.e., one) Gaussian
primitive, the asterisk ‘*’ denoting that a polarization function has been used.

For the Sn atoms the same optimization procedure was carried out on a general basis set,
s(9), sp(7), sp(6), d(6), sp(3), sp(1), d(3), d(1), sp(1), sp(1), where the number in brackets
refers to the number of primitive Gaussians for the particular shell.

Test calculations showed that the AIM theory was insensitive to the use of GGA or LDA.
Analysis of the electron density to obtain the basic AIM properties was performed using
TOPOND 98 [16].

3. Atoms in molecules (AIM)

The charge density ρ(r) is a scalar field and its topological properties are reducible to a
description of the number and type of its critical points (where ∇ρ (rcritical) = 0). These
extrema in ρ(r) can be characterized by the (3 × 3) matrix of second partial derivatives with
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Table 2. The Cartesian components of the eigenvectors of the λ1 and λ2 eigenvalues. The
eigenvectors of λ2 show the direction of maximum metallic character, conversely the eigenvectors
of the λ1 show the direction of maximum insulating character. The relation λ1 · λ2 = 0 holds for
each M–O interaction, M = Si or Sn.

SiO x y z

Relaxed SnO
Si1–O3 λ1 1.000 0.000 0.000

λ2 0.000 0.572 −0.820
Si1–O4 λ1 −0.529 0.000 0.849

λ2 0.000 1.000 0.000
Si1–Si2 λ1 −0.568 −0.010 −0.823

λ2 0.482 −0.815 −0.323
Rocksalt

Si1–O2 λ1 0.000 1.000 0.000
λ2 −1.000 0.000 0.000

Tetragonal wurzite analogue
Si1–O4 λ1 −0.001 −1.000 0.000

λ2 −1.000 0.001 0.000
Si1–O3 λ1 0.707 −0.707 0.000

λ2 0.149 0.149 0.978
Si1–O4 λ1 0.191 0.982 0.000

λ2 −0.982 0.191 0.000
Wurtzite
Si1–O4 λ1 0.707 0.707 −0.008

λ2 −0.707 0.707 0.000
Si1–O3 λ1 −0.707 0.707 0.000

λ2 −0.361 −0.361 −0.859
Zincblende

Si1–O2 λ1 −0.816 −0.408 −0.408
λ2 0.000 −0.707 0.707

SnO (tetragonal structure)
Relaxed

Sn1–O4 λ1 −1.000 0.000 0.000
λ2 0.000 0.522 −0.853

Sn1–Sn2 λ1 0.446 0.446 0.776
λ2 0.707 −0.707 0.000

respect to coordinates of the charge density (the Hessian matrix), which when diagonalized,
has four possible signatures (m, n), expressed as the number, m, of non-zero eigenvalues, and
the arithmetic sum, n, of the signs of the eigenvalues (±1).

The four possible sign patterns, (−1 −1 −1), (−1 −1 +1), (−1 +1 +1) and (+1 +1 +1),
correspond to nuclear (3, −3), bond (3, −1), ring (3, +1) and cage (3, +3) critical points
respectively. A (3, −3) maximum practically corresponds to a nucleus (more precisely there
is a cusp in ρ at the nucleus). A ring critical point coincides with the bond critical point at
the instant of a bond being ruptured. A (3, +3) minimum exists for example at the geometric
centre of a C60 molecule. In this work only the bond critical points or BCPs (signature (3, −1))
are considered.

At a BCP, two curvatures are negative and ρ is a maximum at rcritical in the plane defined
by their corresponding axes; ρ is a minimum at rcritical along the third axis, perpendicular to
this plane. The existence of a BCP is a necessary condition for the formation of a bound state
and implies the existence of an atomic interaction line—a line linking the nuclei along which
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Figure 1. Tetragonal wurtzite analogue. The unit cell is outlined at the centre of the figure. Notice
that the atoms are sixfold coordinated.

the charge density is a maximum with respect to any neighbouring line. If the forces resulting
from the accumulation of electronic charge in the binding region are sufficient to exceed the
anti-binding forces over a range of separations to yield an equilibrium configuration, then the
state is bound and the atomic interaction line is called a bond path. The bond path usually
coincides with the straight-line nuclear separation vector, but there are many exceptions to
this which produce bond path lengths longer than the straight-line distance between nuclei.
The molecular graph isolates the pairwise interactions present in the group of atoms, which
dominate and characterize the properties of the system whether it is at equilibrium or in a state
of change. The BCPs are found to join some but not all of the nuclear critical points. For
instance, in the relaxed SnO-type structure for SiO there are BCPs between Si nuclei with a
separation of 2.933 Å (bond path length of 2.962 Å) but there is no BCP between a pair of
closer Si nuclei at 2.910 Å.

Critical points (BCPs for this work) may be further characterized by the (rotationally
invariant) Laplacian of ρ(r), ∇2ρ(r), and by the principal axes and corresponding curvatures
derived from the eigenvectors and corresponding ordered eigenvalues (λ1 < λ2 < λ3)

produced in the diagonalization of the Hessian of ρ(rb), where the subscript b refers to a
BCP. The eigenvalues λ1 and λ2 describe the plane perpendicular to the bond path which
passes through the BCP, and the λ3 eigenvector defines the direction of the bond path. Using
AIM all interactions are characterized as one of two types, where there is a continuum of
chemical character between the two types. These two types of interaction are designated
according to the sign of the Laplacian of the charge density at the BCP, ∇2ρ(rb): it is positive
for a ‘closed-shell’ and negative for a ‘shared-shell’ interaction. Examples of the former are
the strong ‘covalent’ carbon–carbon bonds in diamond [17], and those of the latter type include
hydrogen bonds [18]. All of the bonding interactions in this study are of the closed-shell type.
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(a)

(b)

Figure 2. (a) Orthorhombically distorted SnO-type sheet structure viewed parallel to the ab plane.
The unit cell is shown highlighted at the centre of the figure. (b) View of orthorhombically distorted
SnO-type sheet structure parallel to the c-axis.

The ellipticity is denoted by ε = λ1/λ2 − 1, and the eigenvectors associated with λ2

and λ1 provide a measure of the extent to which charge density is maximally and minimally
accumulated respectively in a given plane locally perpendicular to the bond path. Large
(e.g. >0.1) values of ellipticity also indicate π character as well as bond instability [19],
and in such situations of large ellipticity the λ2 eigenvector has previously been linked to the
direction in which atoms most easily slide [20], and more recently the direction in which a
defect hydrogen atom moves [1].

A degree of covalent character can be assigned [21, 22] to a bond for negative values of
H (rb), the total local energy density

H (rb) = G(rb) + V (rb)

where G(rb) and V (rb) are the local kinetic and virial energy densities respectively. All
bonds investigated in this study satisfy this condition, though some only marginally as they
have values of H (rb) very close to zero. The dissociation energy per bond De(rb) can be
obtained from the atomic virial theorem [2] and is given by

De(rb) = − 1
2 V (rb).
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Figure 3. The relationship between the bond softness (|λ1|/λ3) and the ‘metallicity’ (ξ(rb)) fits
the simple exponential relation ξ(rb) = A exp[B(|λ1|/λ3)] where A = 0.044 and B = 10.077 and
the correlation was 0.995.

Figure 4. The relationship between the bond softness ELF (calculated at BCP) and the ‘metallicity’
(ξ(rb)) fits the simple exponential relation ξ(rb) = A exp[B(E L F)] where A = 0.175 and
B = 5.743 and the correlation was 0.994.

This relation can be used to calculate the strength of all bonds in a structure on a bond-by-bond
basis; its use was brought to light by the work of Espinosa et al [23]. It may be noticed that
V (rb) and De(rb) are both energy densities, but since V (rb) is defined at a point (the BCP)
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rather than over an area or volume the distinction between energy and energy density becomes
unimportant for the purposes of obtaining the value of De(rb). All the values of De(rb)

obtained in this paper and in a previous paper [1] were found to depend exponentially on the
inter-nuclear separation d according to

De(rb) = A exp[−Bd].

De(rb) has this simple exponential dependence on inter-nuclear separation as V (rb) is
dependent on ρ(rb), which is formed from the square of the (exponential) wavefunction. This
is not a simple two-body interaction, as would be written in a simple inter-atomic potential;
it is a relationship which holds for structures in mechanical equilibrium and only applies to
two-body interactions when there is a BCP between the bodies. The latter criterion is many
body and quantum mechanical in nature. For SiO the best-fit values of the constants are
A = 1613.9 eV, B = 3.606 Å−1 and the correlation was 0.998.

Another quantity that shows the stability of a structure is the ratio of the largest negative
eigenvalue and the positive eigenvalue at the BCPs, i.e. the ratio |λ1|/λ3. The larger the value
of |λ1|/λ3 at a BCP, the ‘softer’ or fuzzier a bond is. This idea of bond softness is related to
metallic character, so the softer a bond the more metallic it is. The inequality |λ1|/λ3 < 1
holds for all closed shell bonding interactions, and |λ1|/λ3 is related to the rigidity of the bond
path. This can be seen from the fact that these interactions (all the bonding interactions in this
paper are closed shell) are dominated by the contraction of charge away from the inter-atomic
surface towards each of the respective atomic basins. The larger the value of |λ1|/λ3, the
more the charge density remains at the BCP rather than moving towards the atomic basins,
and the smaller the value of ∇2ρ(rb) will be. This observation leads directly to the concept of
metallicity; the Laplacian for closed shell interactions is always positive, a larger magnitude
indicating a greater tendency for charge to move away from the BCP along the bond path into
the two atomic basins connected by the bond path. A smaller value of the Laplacian means
there is a greater tendency for the charge density to remain in the inter-nuclear region and away
from atomic basins. This situation leads to bonding interactions with more metallic character.
We can therefore define

ξ(rb) = ρ(rb)/∇2ρ(rb), for ∇2ρ(rb) > 0

where ρ(rb) and ∇2ρ(rb) are the values of the real space charge density and the Laplacian
respectively at the BCP. This relation holds for ∇2ρ(rb) > 0, which is the case for metallic
interactions. If the ratio ξ(rb) is of the order of unity or less, then the BCP can be described
as being non-metallic in character, or insulating. Values of ρ(rb) and ∇2ρ(rb) are listed in
previous work, making it possible to calculate the metallicity (see table 7 in [1] under the
heading interaction C4–C5, diamond). This is another example of a metallic bond, where for
a metastable state (during kink-pair formation) in the unreconstructed core of the 90◦ partial
in diamond, a closed shell C–C interaction has a ξ(rb) of 3.30. This bond can be judged to
be metallic, since it is responsible for the existence of a half-filled band. A description for
metallic behaviour present in bonding interactions already exists within the formalism of the
ELF (electron localization function) developed by [24] and is very elegant, since it describes
all types of bonding by values of ELF (in the bonding region) between 0 and 1. In this paper the
new simpler measure is introduced and can be used to compare the AIM based formalism for
metallic versus insulating character. The reasoning behind this choice of relation to describe
metallic character follows directly from the use of the bond ‘softness’ relation |λ1|/λ3. In
figure 3 it can be seen that the bond softness |λ1|/λ3 is related to the metallicity ξ(rb) by
a simple exponential relation. The choice of ξ(rb) fits with the intuitive idea of metallic
behaviour; metallic character is associated with a low value of the charge density ρ(rb) and
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a slowly varying charge density. The variation in the charge density is associated with the
second derivative of the charge density, the Laplacian.

In table 1 it can be seen that in the relaxed SnO-type structure, interlayer bonds exist
and display metallicity at the BCP, as indicated by the large value of ξ(rb) and ELF value of
0.6, since an ELF value at the BCP of 0.5 indicates pure metallic bonding [25]. In figure 4 it
can be seen that the value of ELF at the BCP is related to the metallicity ξ(rb) by a simple
exponential relation. Further to this, analysis of the properties derived from the charge density
ρ(rb) of these interlayer bonding interactions allows the direction of the metallic character to
be deduced.

Since both charge and charge carrier accumulation and movement is preferential along the
direction associated with λ2 then the movement of charge and charge carriers will follow this
direction too (see table 2 and [26]). Metallic properties follow from the movement of charge.
Therefore if a bonding interaction is metallic, we can compare the Cartesian components of the
eigenvector associated with λ2 to the direction of maximum metallic character in real space.
The maximum metallic character is effectively the minimum insulating character; conversely
the Cartesian components of the eigenvector associated with λ1 correspond to the direction
of maximum insulating character and hence minimum metallic character. Where a bonding
interaction has a zero value for the ellipticity, then the direction for the metallic character is
still definable but there will not be a maximum in the metallicity in the direction associated
with the λ2 eigenvalue.

4. Results and discussion

4.1.1. Structural stability—energy comparison approach.

As an alternative to calculating the total energy of a particular structure as a means of comparing
stabilities, an AIM based approach is used. This approach is beneficial for assessing relative
structural stabilities as the contributions (De(rb) see table 1) to the total bond energy Desum(rb)

arise only from the bonding.
The energy of all its bonded nearest neighbours to M is calculated as Desum(rb) in table 1

by summing the De(rb) values for each bond attached to a central Si or Sn. A larger value
corresponds to a more stable structure. Immediately it is evident that the order of descending
stability is SnO type structure, wurtzite, tetragonal wurtzite analogue, zincblende and rocksalt.
The order of the wurtzite and tetragonal wurtzite with respect to stability is reversed compared
with the work of Mankefors et al [4]. This is not surprising, as the pseudo-total energy has
contributions other than those of the bonding interactions. But despite this difference there
is still considerable agreement. In the SnO type structure the newly found Si–Si interaction
(see figure 2) accounts for 11.3% of Desum(rb) (see table 1), and accounts for the most part
for the increase in stability of the SnO relaxed structure over the next most stable structure,
wurtzite. Each Si–Si bond is weak, with a De(rb) value of only 0.200 eV, but every Si has four
such interactions to take into account and these four bonding interactions provide a greater
contribution to Desum(rb) at 0.800 eV than does the Si1–O4 bonding interaction which provides
0.730 eV.

4.1.2. Structural stability—bonding network approach.

Examination of the bonding network (molecular graph) of the five given structures shows
an evolution from the rocksalt structure through to the relaxed SnO structure—in order of
decreasing isotropic character: rocksalt, zincblende, wurtzite tetragonal wurtzite and relaxed
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SnO structure. Use of space group operators provides a simple way to state the relative degree
of isotropic character present in these structures, but the use of AIM analysis of the relaxed
charge densities of the five given structures allows a deeper understanding of the nature of the
evolution of the structures than can be provided by the symmetry alone, and so is used in this
study. AIM analysis of the relaxed charge densities of the rocksalt, zincblende and wurtzite
structures produced no new bond paths that would not be considered with a purely valence
driven model of bonding.

The rocksalt and zincblende structures are the most isotropic; they have only one
inequivalent bond path per unit cell and the BCPs possess very small values of ε, of order
1 × 10−16 (see table 1). In the structures (rocksalt and zincblende) with only one inequivalent
bond path per unit cell the silicon and oxygen nuclei are everywhere fourfold coordinated. The
wurtzite structure contains two inequivalent bonds which both possess non-negligiblevalues of
ε (see table 1), which can be explained by the wurtzite having a hexagonal unit cell. The Si–O
basal bonds are more unstable than the Si–O bonds parallel to the c axis (labelled Si1–O4 in
table 1); this is indicated by the value of ε being an order of magnitude lower than for the Si–O
bonds parallel to the c-axis. The wurtzite structure is everywhere fourfold coordinated. The
tetragonal wurtzite structure was found to be sixfold coordinated (see figure 1), the sixth bond
being Si2–O4, with three inequivalent bond paths, demonstrating a wider bonding environment
than the wurtzite structure. The basal bonds were found to be weaker and less stable (larger
values of ε) than the c-axis bonds (labelled Si1–O4 in table 1), as was found to be the case for
the wurtzite structure. The SnO-type relaxed structure was found to have three inequivalent
bond path lengths, with eight bond paths emanating from each silicon nucleus.

To summarize then, the number of inequivalent bond paths increases from one to three
whilst the connectivity increases from fourfold to eightfold, from the rocksalt through to the
relaxed SnO-type structure. Notice that although the tetragonal structure has the same number
of inequivalent bond paths as does the SnO-type relaxed structure, the latter structure possesses
the higher values of ε. These results are in agreement with those of [4] since they predict the
same order of increasing stability from the rocksalt to the relaxed SnO-type structure.

4.2.1. Chemical character of M–O bonding interactions—covalency and ionicity.

From table 1 it can be seen for all five structures considered in this study, namely rocksalt,
tetragonal wurtzite, wurtzite, zincblende and relaxed SnO-type structures, that all of the
interactions are closed shell for both SiO and SnO (since ∇2ρ(rb) > 0). This means that all of
the interactions have some degree of ionic,or rather polar-ionic character. Any further chemical
characteristics of bonding interactions, such as covalent character and metallic character are
found in the structures studied to vary from very substantial to negligible. The most stable
structures have the broadest range of bonding character, quantified by the values of the bond
softness |λ1|/λ3, the newly defined indicator of electrical character ξ(rb), ellipticity ε and
H (rb).

The high symmetry rocksalt and zincblende structures both possess values of ellipticity
ε = 0 for the single inequivalent bonding interactions. It has already been observed that zero
values of ellipticity are indicative of sp3 hybridization [1]. The dominance of the electrostatic
energy contribution is shown by the small values of ξ(rb) (which corresponds to a relatively
large value of ∇2ρ(rb)) and a low value of H (rb).

The low value of ξ(rb) in the zincblende structure shows a much better balance of the
electrostatic and covalent contributions to the lattice energy. The covalent contribution to
the lattice energy for the zincblende structure is more than twice that of the rocksalt structure,
indicated by the magnitude of H (rb). The wurtzite structure achieves a better balance between
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ionic and covalent than do the rocksalt or zincblende structures; this is seen from the range of
values of ξ(rb) and H (rb) in table 1. The tetragonal wurtzite analogue achieves a better mix
of ionicity/covalency still, and the best overall mix of ionicity/covalency of all five structures
in this study is found in the SnO-type relaxed structure, as can be seen from the widest range
of values of ξ(rb) and H (rb) in table 1.

4.2.2. Chemical character of M–O bonding interactions—metallicity.

Mankefors et al [4] noticed that superimposed on the expected semiconductor-like gap between
the occupied ‘bonding’ and unoccupied ‘anti-bonding’ valence bands was found a non-
negligible density of states at the Fermi level of SiO in the SnO-type relaxed structure. Metallic
character in this work is characterized by a value of ξ(rb) > 1 or more, and found for the
Si1–Si2 interaction in the SiO orthorhombically distorted SnO-type structure, but not in the
tetragonal wurtzite analogue or in the SnO-type structure. Values of ξ(rb) close to 1 denote
semi-metallic character, and values less than 0.6 denote insulating character. It was also pointed
out by Mankefors et al that the metallic signature was due the dominance of the Si PDOS at
the Fermi level, suggesting that it is indeed the increase in Si–Si overlap which is responsible
for this metallic property. Of course this increased Si–Si overlap leads to the existence of a
Si–Si bonding interaction.

Using quantities derived using AIM one is able to provide quantitative explanations for
the observations regarding metallicity made by Mankefors and co-workers. Simply stated:
the Si–Si bonding interaction found in the orthorhombically distorted SnO-type structure is
responsible for the observed metallic behaviour. The dominance of the metallic character in
the �–Y direction in reciprocal space (parallel to the b direction in real space) is found to
be in agreement with the results of table 2. The non-negligible value of ξ(rb) (see table 1)
for the Si1–O4 interaction can be explained by the metallic character of the Si1–Si2 bonding
interaction ‘leaking’ into the Si1–O4 bond. The idea that bonds can leak their character into
one another is not new: in the 1930s Pauling thought that the unusual properties of normal ice
(e.g. expanding upon cooling below 4 ◦C) were due to the hydrogen bonds possessing a small
admixture of the bonding characteristics of the covalent bonds [27]; later experimental [28]
and theoretical work [22] confirmed this. The mixing of bonding character in the Si1–O4
interaction can be explained by the dominance of the metallic bonding in the y direction in the
Si1–Si2 bonding interaction and the fact that the eigenvector of the λ2 eigenvalue for the Si1–
O4 lies parallel to the y-axis (see table 2). The metallic Si1–Si2 bonding interaction contains a
degree of covalent character; this was the description given by Pauling [27] and more recently
Silvi and Gatti [29]. Importantly for the AIM study of metals and metallicity, Silvi and Gatti
found that the existence of a non-nuclear attractor of the electron charge density gradient field
was not a prerequisite for metallic behaviour.

5. Conclusions

Although this investigation has used a different approach than was used in [4], agreement
has been largely achieved. The presence of the non-negligible density of states at the Fermi
level of SiO in the orthorhombically distorted SnO-type structure is manifested in this work
by the presence of Si–Si bonding interactions. The metallic character found mainly along
the b (�–Y) direction correlated very well with the eigenvector of the λ2 eigenvalue of the
Si–Si bonding interaction. The lack of strong metallic character in both the tetragonal SiO
and relaxed SnO structures was also illustrated by the lack of dominance of the b direction of
the λ2 eigenvalue, again in agreement with this previous work. The origin of the unexpectedly
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high conductivity in thin silicon oxide layers can be explained by the presence of the newly
found metallic interactions (Si1–Si2) found connecting the layers of the SnO type relaxed SiO
structure. From this work the hypothesis is drawn that the presence of metallic band structures
indicates the presence of a bonding interaction, even when a bond is not suspected of being
present.

Future work will concentrate on applying these extensions of the AIM theory to other such
technologically important and interesting systems including those possessing CMR, such as
manganate perovskite materials based on LaMnO3. The introduction of the ratio ξ(rb) will be
the subject of further work on a range of suspected metallic, semi-metallic and insulating
compounds to deepen the understanding of the real space approach to metallicity. Also
investigations will be undertaken to test the hypothesis that the presence of metallic band
structures indicates the presence of a bonding interaction, especially in cases where no known
instances of bonding exist, as was the case for the SnO-type structure prior to this study.
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